
More engineering teams are experimenting with generative AI tools like Copilot to ostensibly
improve productivity and developer experience. But what does the quantitative data say?

Using actual engineering data across a sample of nearly 800 developers in Uplevel’s
customer population, Uplevel Data Labs analyzed the difference in how teams with and
without Copilot access performed according to objective metrics like cycle time, PR
throughput, bug rate, and extended working hours (“Always On” time).

The expectation is that Copilot helps developers write code faster and smarter, which
should lead to lower cycle time, more PRs, and fewer bugs without increasing the risk of
burnout. Here’s what we found:

Can Generative AI Improve
Developer Productivity?
Here’s what the real-life data suggests

When comparing PR cycle
time, throughput, and
complexity along with PRs
with tests, Copilot
neither helped nor hurt
the developers in the
sample, and also did not
increase coding speed.

CONTROL TEST

Cycle Time

While some of these
metrics were statistically
significant, the actual
change was
inconsequential to
engineering outcomes,
e.g. cycle time decreased
by 1.7 minutes.

+41%

in bug rate

This suggests that Copilot
access may impact code
quality. (The fact that PR
throughput was unchanged
further supports this
possibility.)

CONTROL TEST

Sustained Always On Pre
and Post Copilot Access

Uplevel’s “Sustained
Always On” metric
(extended working time
outside of standard
hours and a leading
indicator of burnout),
decreased for both
groups. But it decreased
by 17% for those with
Copilot access and by
almost 28% for those
without.

Copilot access was
 in mitigating

the risk of burnout.

not
effective

Copilot access provided
 in

efficiency metrics.
no significant change

Developers with Copilot
access saw a

 while their
issue throughput
remained consistent.

significantly
higher bug rate

Access to generative AI tools like Copilot has raised a number of important questions.
Will AI help developers ship faster? Can it help them write better code and avoid burnout?

Not yet for this population. But innovation moves fast, and GitHub that Copilot
does improve developer satisfaction. Engineering leaders may benefit from adopting a
conservative Copilot adoption strategy to prepare for further advancements in the tool:

reports

What Does This Data Mean?

Set specific goals.

Offer training to your teams.

Continue to experiment with generative AI.

Monitor the engineering effectiveness metrics that Copilot might impact.

 What specifically are the outcomes that you are wanting to
achieve by including Copilot in your team’s workflow?

 Onboarding can be a good way to lay out where Copilot
should and shouldn’t be used and what safeguards are in place as an organization.

 Seek out the specific use cases in which
Copilot can be helpful and the prompts that yield the best results. Share these
findings across your organization so that success can be replicated.

 Start A/B
testing on your own to gain objective, quantitative insight into whether AI is actually
improving developer productivity and/or helping you reach your operational goals.

Uplevel is the only holistic system of decision for enterprise
engineering organizations. Applying advanced data science to
tooling and collaboration data, Uplevel surfaces and interprets
the hard-to-find signals that you need to focus your efforts,
prioritize initiatives, and build an effective engineering culture.

Learn more at

uplevelteam.com

Navigation for Engineering Leaders

Metrics were evaluated prior to implementation of
Copilot from January 9 through April 9, 2023 versus
after implementation from January 8 through April 7,
2024. This time period was selected to remove the
effects of seasonality.

Data on Copilot access was provided to Uplevel Data
Labs across several enterprise engineering customers
for a total of 351 developers in the TEST group (with
Copilot access) and 434 in the CONTROL group (without
Copilot access). The developers in the CONTROL group
were similar to those in the TEST group in terms of role,
working days, and PR volume in each period.

The results are based on t-tests
for numerical metrics and z-tests
for proportions to understand
any impacts to each metric.
Analysis is based on whether
individuals had access to Copilot,
not actual usage, because
Copilot does not make that data
available at the individual level. All
results are observational, limited
to the developers included, and
not causal.

About the Study

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://uplevelteam.com/
https://uplevelteam.com/

	Back.pdf
	Front.pdf

